Showing posts with label government. Show all posts
Showing posts with label government. Show all posts

Tuesday, May 2, 2017

I want to say one word to you.

In the movie The Graduate, a young Dustin Hoffman plays Benjamin, a recent college grad wondering what to make of his life. He’s approached by Mr. McGuire, a friend of his parents:
McGuire: I want to say one word to you. Just one word.
Benjamin: Yes, sir.
McGuire: Are you listening?
Benjamin: Yes, I am.
McGuire: Plastics.
Benjamin: Exactly how do you mean?

I have similar, one-word advice for engineers: Systems.

Perhaps you’re as confused as Benjamin, or maybe it’s old news. I find that most engineers fail to comprehend how important systems thinking is to good engineering, good policy, good everything. A lack of systems thinking produces unanticipated problems in every field. Systems thinking prevents many problems.

The standard definition is that systems thinking is holistic – it considers not just the component of interest but also the linkages and interactions of all the other components affected by and affecting that component. It recognizes the fundamental interconnectedness of all things.

That’s too general to be meaningful, so here’s an example: A dam on a river pools water upstream, flattening the slope and slowing the flow. The flow rates also change downstream, reducing some flows and increasing others, depending on the dam’s operational rules. Sediment deposits in the upstream pool and erodes downstream of the dam, changing the river bed and water surface profile. Those changes propagate upstream and downstream great distances, altering river hydraulics far from the site. Water temperature, residence time, evaporation, and reaeration rates change as the flow is slowed and stored, sometimes changing water quality.  Groundwater rises or falls depending on demand vs supply. Some aquatic species prefer impounded water, others can’t handle it, so the biological community changes. Lakeside properties become desirable home sites, so septic systems, fertilizer and pesticide runoff increase. Construction site erosion contributes faster runoff and more sediment. Increased population increases needed water, highway, school, and other government services, so tax revenue must rise. The effects, both favorable and unfavorable, spread farther and farther from the dam, affecting the physical, biological, economics, and social fabric of an entire region.

A transportation example: The U.S. manages transportation by looking only at one mode at a time instead of a system for moving people and goods. Each mode – highway, railway, airline, waterway and pipeline – has a separate set of practitioners and advocates when they should be viewed as an integrated system of balanced choices. With few exceptions, mass transit is managed as a competitor to personal vehicles instead of a complimentary component of a single system. Politicians rant about subsidizing Amtrak while happily supporting massive subsidies for highways, which encourage urban sprawl, requiring still more highways.

The Corps of Engineers has attempted to address systems effects in water resources with programs like Regional Sediment Management and Engineering with Nature. EPA has long advocated a watershed approach to air and water quality issues. Both run up against hard political boundaries that limit the approach. Some local and state departments of transportation, notably Mississippi’s, demonstrate an enlightened understanding of transportation as a multi-modal system, but the U.S. Congress and Federal DOT wear blinders, seeing only one piece, one project at a time.

What to do? First, teach systems thinking in school, starting with high school and continuing in college and professional schools. Professional societies can organize conferences and encourage systems-oriented papers just as they do case studies, with a separate journal section. They can offer continuing education on systems approaches in various disciplines. They can educate the public, politicians, and agencies. As individuals, we can search out books and short courses to help us open our horizons. A good place to start is the book, Thinking in Systems: A Primer, by Donella H. Meadows. We can educate and encourage our elected officials to think in terms of holistic systems.


Are you listening? “Systems.”

Thursday, July 28, 2016

The Goldilocks Job

Which type of job sits in the Goldilocks zone of “just right” for you? Government or private? Large or small organization? Service or manufacturing? It’s an important question for job satisfaction.
For many folks, the question is simply, “Where can I get a job, period.” Engineers usually have more options and finding your Goldilocks engineer job requires investigation and discernment. The correct fit depends on your personality, habits, and goals in combination with the culture of the workplace. You can find out for sure only by working at a specific place, day-in and day-out, but here are my general observations.
Large organizations, both private and government, share some characteristics. They have lots of rules (policies) on how to handle various situations, which can limit flexibility and creative solutions. They also have lots of resources, so if you encounter a tough problem there will probably be someone who can help. Large organizations can afford some less productive members. That can be good – providing some valuable expert that is needed occasionally – or bad – allowing poor performers (deadwood) to hide their lack of productivity.
A common occurrence in large organizations is that employees get slotted into a narrow specialty and do the same thing over and over again. I’ve known some people who loved that and others who hated it. Getting wider experience requires a policy that ensures rotational assignments or that the person aggressively seeks out new project types within the organization.
Small organizations offer a mostly reversed image of large ones’ characteristics. They are much more flexible and creative. Readily available skills and knowledge are limited to existing staff. If you encounter something new, you will probably have to look outside the organization for help. A small staff often means that everyone needs to be a generalist, able to take on a variety of project types. You don’t get pigeon-holed into one type of project but your ability to become really expert in some specialty becomes limited. Personality conflicts that might be tolerable in a large organization can be impossible in a small one.
Government organizations have much in common with large private companies with near-monopolies, including inertia. In fact, the differences between large and small organizations tend to be greater than those between government and private. Some people disparage government workers but I’ve seen just as many conscientious, smart, and hard-working people in government as in the private sector. One major difference is that the clients of private organizations are usually the ones providing the funding, i.e., buying the product; whereas, government is funded by political bodies, not the clients (i.e., the public). That affects priorities within the organization.
One notable difference between private sector and many government jobs is the notion of billable hours. Many engineers really hate having to generate funds for, and then account for, every hour of every day, which is pretty much standard in the private sector. It also happens in some government offices. New hires aren’t expected to generate their own funding but someone has to give them permission to charge to a project. I found that it helps keep people focused on what they were supposed to be doing but I do agree that billable hours can be a distracting burden.

Which one works best for you?